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GLOBAL ISOMETRIC EMBEDDING

OF A RIEMANNIAN 2-MANIFOLD

WITH NONNEGATIVE CURVATURE
INTO A EUCLIDEAN 3-SPACE

KAZUO AMANO

1. Introduction

The isometric embedding problem of a 2-dimensional Riemannian man-
ifold M* with Gaussian curvature K > 0 into 3-dimensional Euclidean
space R? is one of many difficult problems. In fact, it is quite hard to show
certain a priori estimates in a neighborhood of zero points of K and to
verify the convergence of the Nash-Moser type interaction scheme, since
the linearization operators are degenerating on {K = 0}. Lin [5] studied
a local problem and solved it. Naturally, the next subject is a global prob-
lem, which we shall study in this paper. In a global case, Lin’s method
does not work well, though it is quite suggestive, since his technicalities are
particularly adapted to the local situation. For instance, his ingenious pa-
rametrization would not lead to success in the global case. What we need
are a new type of implicit function theorem and global a priori estimates
for degenerating linearized operators.

Let g = g,;dx' dx’ bea C”* Riemannian metric defined in R?, where
r>2and 0 < a < 1 (actually, C" smoothness will suffice for our purpose
(cf. §5)). We assume that

(1-1) |g;j_6ij|,<<1 (ISi,jSZ),
where J, ; stands for Kronecker’s delta, ||, is the C’ supremum norm,

and 4 <« 1 means that A4 is sufficiently small. K denotes the Gaussian
curvature of the Riemannian manifold (]R2 , &) . We assume

(1.2) K>0,
and put f = Kdet(gij). It is to be noted that (1.1) and (1.2) imply

0< f« 1. Let D be a bounded convex domain in R? such that there
exists a convex function ¢ € C°°(R2) satisfying ¢ <0 in D and ¢ >0
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in R\ D. Forasmall p >0, D, denotes a bounded convex domain
{x € R?: #(x) < p}. We define a nonlinear operator F[u] by

(13)  Flul=det(V,V,u) + f(g"uu; ~ 1) — det((u,),,).
where (gij) = (gkl)_1 , V; are covariant differentials, u, = 8u/8xi ,
[ ey (6(x) < p/2),
Hy(x) = 12 _
d(x")" +exp{1/p/2 — $(x))} (6(x) > p/2),
d >0 is a small constant, and (g,),; = 8up/8xi8xj.

We shall prove the following.
Theorem 1.1. Assume (1.1), (1.2), and r > 14 + 2k for some 0 <

Kk < 1. Then for a small p >0 there exists a function u_ € w’/z_z_"(Dp)
such that

(1.4) Flu,+u_]1=0 inD,, u,=0 ondD,
and ’
(1.5) ooy jp_zn < 1.

Theorem 1.2. Assume (1.1), (1.2), and r > 15. Then there exists
a global C"""V2 jsometric embedding of (D, g) into 3-dimensional
Euclidean space R*.

Here W*(-) denotes the Sobolev space with norm || - || s L[] is Gauss’s
symbol, i.e., [(r — 11)/2] is the largest integer < (r — 11)/2.

In Theorem 1.2, assumption (1.1) and the convexity of D are essential.
If we remove one of those assumptions from Theorem 1.2, then it is no
longer true; we will be able to find counterexamples. It is to be noted that
(1.1) and convexity are not necessary in the local case (cf. Lin [5]). (1.2)
ensures that the nonlinear equation which we study later is of elliptic type.

We first shall show that Theorem 1.2 follows from Theorem 1.1 (§2) and
second, establish an iteration scheme of Nash-Moser type for the nonlinear
operator (1.3) and prove Theorem 1.1 (§83 and 4). We also prove that
Theorems 1.1 and 1.2 remain true for a C’ Riemannian metric g (§5).

2. Proof of Theorem 1.2

We shall show that Theorem 1.2 follows from Theorem 1.1.
Proof of Theorem 1.2. Since r > 14 + 2/4, and Sobolev’s lemma
gives [uly,_y0 < Cllull,jpp_yyy and W2727VHQ) ¢ CPR(Q),
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Theorem 1.1 implies that for a small p > O there exists a function
u, € C[('_7)/2](5p) such that

(2.1) F[up+uw]=0 inDp, u,=0 onaDp
and
(2.2) |uoo|[(r_7)/2] <1

It is easy to show that u = u, +u_ satisfies

(2.3) det(V,V,u) + f(g”uu,~1)=0 inD
and
(2.4) det(g;; —u;u;) >0 in Dp/2

p/?

when (25x1)2 <1in D X By brute force computation, it follows from
(2.3) and (2.4) that

(2.5) K[g;; —uu;]=0 in D

/2>
where
1 71292711 = 7119172
Kyl = —— |8, [ &
Y det(?,-j) ! ( 2y, /det(yl.j)

+8, 21101715 — Y1201 — Y1192y
2y, 14/ det(y;;)

Gauss’s Theorema egregium shows that K[g, U] is the Gaussian cur-

vature of the Riemannian manifold (D, /2 (8;; —uu;) dx’ dx’). Hence,
the C!"~7/2l Riemannian manifold D,z (8 —u;u;) dx' dx’y is flat.

It is clear that we have only to prove the existence of a C [r=7)/21-2

coordinate system (y1 , y2) defined in D satisfying
2 2,2 1
(26) (g —uu)dx'd = ('Y + ("), ' Ad’#0.
In fact, (2.6) implies
g'dx' dd = (") + (&N + (@), d'Ad’#0,

ie., themap (3', >, u): D> R’ isa Cl"""/3=2 jsometric embedding.
In order to prove (2.6), we shall show two lemmas.

For the sake of simplicity we put ¢ = [(r—7)/2]-1, 8y =8~ uu; €
C'(D,), &= g;dc' dx’,and K =K1[g,].
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Lemma 2.1. For any point x € D and any unit vector & € Tx(_ﬁ)
there is a geodesic curve c(t; x,&), 0 <t <t,, on (5,,, &) such that
c0;x,8) =x, &0;x,8) =&, c(t;x,8) €D, for 0<t <1y, e(ty;x,6)
€ BDP, and c(t; x, &) isa C?™ function with respect to t, x, and &.

Proof. The geodesic curve c(¢; x, &) = (cl(t; x, &), cz(t; x, &) is
defined by

(2.7) E4Ti(dd =0,  c0)=x, ¢&0)=

where T}, = 2°((g,,); + (&), - (8,))1/2. Since T, € C*'(D,) and
|I~“f.‘j| —1 < 1,the C?” ! regularity of ¢(¢; x, &) follows from a well-known
fundamental theorem of ordinary differential equations (cf., for example,
[4]). The remaining part of Lemma 2.1 is clear.

Remark. We may regard y(¢; x, &) = é(¢; x, &) as a solution of the

initial value problem
ko i j
i+ T’y =0, p0)=¢,

where f{fj( l"k (s x,€)) isa C?! function of ¢, x,and &. Hence,
pt; x,8) = é(t; x, &) is CI7 ! smooth with respect to ¢, x, and &.
Furthermore, using (2.7), it is clear that &(¢; x, &) is also C?! smooth
with respect to ¢, x,and &.

Lemma 2.2. There exist a global geodesic parallel coordinate system
(y y ) on D and a positive function h(y1 , y2) defined on D such that
y ieci YD), he Cc*Y(D), and

(2.8) . g= (") +h0", Yy

In particular, if K =0 and q>3,then h=1.

When (D, ) is embedded in R® and g = oo, we can find the proof
of Lemma 2.2 in many textbooks. However, (D, &) is not yet embedded
in R and, furthermore, we are interested in the case ¢ < oo and the loss
of regularity. Thus, we have to prove it here.

Proof of Lemma 2.2. We construct a global geodesic parallel coordinate
system (yl, y2) on D as follows: First, we fix a point p € D and a
unit vector v € Tp(ﬁ) , and take a geodesic curve c(Z,) = (cl(tz) ) cz(tz))
satisfying

(2.9) &) + T (0 (1,)d (1) =0,  c(0)=p, &0)=uv.
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Second, we define a family of geodesic curves c(f,; t,) by

(2.10) (05 1) + ()¢ (15 1) (15 1) = 0,
(0,t2)— (12), (0,t2)— (tz)’
where
v(ty) = g7 (1)), (1) Ng"’ ()6 (1)6(1) |

and (¢,(8,), ¢,(1,)) = (éz(tz), —¢ (tz)). Here we note that |v(z,)| =
V&, v (t)v () =1 and (¢(1,), v(ty) = g,,¢'(1,)v'(1,) = 0. Lemma 2.1
shows that the family of geodesic curves {c(t,;t,)} covers D and, fur-

thermore, by Lemma 2.1 and the remark following it, c(¢;t,) is ci!
smooth with respect to ¢, and ¢,. Taylor expansion

1
(2.11) ot 5 ;) = c(ty) +v(ty), + {/0 (1—1)é(t,;t )dt}(t1)2

enables us to compute 6c"(t1 3 1) /6tj. Combining (‘2.1 1) with (1.1), we
obtain det(dc’(t;; 2,)/0t;) # 0.
Third, for x = c(t,; t,) € D, we define '(x), y*(x)) by

t L.
(2.12) y'= [eanla, = [Clewna,

where |y| = 1/g,;7'»’. Hence, we get a global C?! coordinate system

(y1 , y2) defined on D. It is to be noted that, using the construction pro-
cedure of (y1 , yz), we may assume that (y1 , yz) is defined in a neigh-
borhood of D.

We shall show that, in the new coordinate system (y1 , yz), g has a
simple expression of the form

(2.13) g(dy')’ + h()(dy*))".
In order to prove (2.13), we abandon the original coordinate system
(x1 , X ) temporarily, and write & as & = 4, dy dy’ . Let us fix a point

Vo = (yO,yO) € D arbitrarily and take a curve c(f) = (cl(t), cz(t)) =
(yé +t, yé) . Then, for all sufficiently small ¢ >0,

dist(c(0), ¢(?)) = ¢' (1) = ' (0) = ¢

(e, ()= [\ @@= [ oyl

and
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Hence, we have A, (y,) = 1; this implies #; =1 in D. Next, let us
fix a point y, = (0, yg) € D arbitrarily and take another curve c¢(t) =
'(t), A1) = (¢, ¥3). As is well known, for a vector field ¥ = 5'9/9y’
the covariant derivative V,Y is defined by
i J i j.ky O
V.Y = (¢! + T n'¢ )8—y; ,
where 11; = Bni/ayj and I‘fj = hkl((h,"j + (hy); —(hi))/2. Direct com-
putation gives :

J
(2.14) Vc'ilzrlﬁif’ Vc'iz =rizii'
dy dy oy oy

Since c¢(t) is a geodesic curve, we have I‘il =&+ I’j.kc'j ¢ = 0 which
implies, by (2.14),

7] 7]
2.15 V.—,—= ) =0.
( ) < cayl 8y2>

(2.14) and h; =1 give

(2.16) <8—yl ’ Véb7> = I‘112}111' = hlihu((hﬁ)l + (hlj)Z - %(hn)j) =0.

Hence, we have, by (2.15) and (2.16),

e} 8 8 8 e} 9
(2.17) Vé '—1', —_2 = Vé__l’ ——'2— + _I’VC"—2 =0_
ay'  dy 8y 8y dy oy

Using the definition of the coordinate system (y1 , y2) , we obtain
(2.18) D 9N 0 atc)

ay 9y
(2.17) and (1.18) show that

15} 15}
—, —=)=0 onc(),
<8y1 8y2> ®

which implies 4, = h,, =0 in D. We have only to put a(y) = h,,(y).
Since &;; and x' are C? smooth with respect to ¥’ by virtue of the
inverse function theorem, C?! smoothness of h(y) follows from

= {2, 2V (2 i>8_ﬂ8_x_"_g ox' 9x)
ay*’ ay? ax'’ ax’/ 8y*ay* “Yoy?oyt
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In the case K =0, Gauss’s theorema egregium shows
(2.19) 8/08y"Y*Vh = 0.

Here we used the assumpt1on q > 3 which implies 2 € C (5) Letusfixa
point y, = (0, yo) € D arbitrarily and take a curve ¢(¢) = (¢ ( ), € 2(t)) =
(0, yé +¢t). Then, for all sufficiently small ¢ > 0,

dist(c(0), c(2)) =¢

dist(c h{c(7))dr.
0=

Hence, we have A(y,) =1 which implies h|y1=0 = 1. Since
Ik el =,
y

and

we obtain 9h /'3y1| yioo = 0. Therefore, we have

(2.20) Vhl,_o=1, ovh

=0,
3y1

which together with (2.19) gives VA =1,ie, h=11in D. q.ed.
Consequently, (2.6) is proved; that is to say, the proof of Theorem 1.2
is complete.

3. Proof of Theorem 1.1 (Part 1)

The purpose of this section is to establish an implicit function theo-
rem of Nash-Moser type. Though there already exist numerous implicit
function theorems, none of them is applicable to our problem. In fact, if
we used them, we would end up with linearized operators of mixed type
which we cannot solve so far. However, repeated use of elliptic regular-
ization, or elliptic singular perturbation for linearized operators, enables
us to overcome the difficulty. By virtue of our implicit function theorem
we can prove an important part of Theorem 1.1.

For the sake of simplicity, we put u = u o3 So=T- 2,

3.1 e=max{|Fully”, |FLall; **?} and 6=6"""

It is to be noted that we may assume that & > 0. In fact, if &£ = 0, then
Theorem 1.1 is trivial; we have only to take u_ = 0. (1.1) implies that
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¢ > 0 is sufficiently small. Thus we may assume that 0 < ¢ < 1 and

6 > 1. Throughout this section, C > 0 denotes a certain large constant

which is independent of ¢ and n. Actually, C will be determined as a

large positive number satisfying (3.2), (3.10)-(3.12), and (3.23)—(3.24).
Lemma 3.1. We have

(3.2) ul, <C (0<s<sy+4),

(33)  |Flully<ved™?,  |IF[ull,<e0™® (0<s<sy),
where C > 0 is a constant independent of ¢ and p.
Proof. (3.2) is clear. Direct computation gives
Flully < &% = veo ™

and
IFLall, <™ =ea™  (0<s<sy).

We define linear operators L[] and LE [¢], &, >0, by

(3.4) Llulv =8, Flu+tv]|,_,=a ][u]v +a [u]v
(3.5) L, [u]v =Llulv+e¢ Lv = a [u]v + a [u]v

where L = ag” V,V; and a > 0 is a constant which will be determined
later.
Lemma 3.2. If e, = |F[u]|,, g uluj <1/2,and Lu>1, then
(3.6) det(a”[u]) > g
Proof. (3.4) and (3.5) give

11

a, [ul=uy + F22uk +eé ag ,

+ det(y, )+8a det(g' )

as‘[u] u21+1'k u,)+e ag ,
af_l[u] = —(u;, + I'Jf2uk) + s*ag ,
aff[u] =u;, + I’]fl U, + s*agn,
which implies
det(aé{[u]) = det(V,V,u) +e Lu+ efa2 det(gij)
= Flul+ f(1 - gijuiuj) +det(u,;) +&, Lu+ sfa2 det(gij)
= (Flul+e,)+ f(1 - g”uu;) + det(n,)
+e (Lu—1)+¢ed detdet(g").
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Since, by the assumption, F[u]+e¢, > 0, f(l - gijuiuj.) > f/2, and
e, (L[u] — 1) > 0, we obtain (3.6).
Remark. It is to be noted that direct computation gives
—4 Ve —
det(p,;) > (¢ - p/2) *exp(2/(p/2~ ¢)) - det($,)) >0 inD,\D,,.

Here the convexity of ¢(x) is essential.
In this section, we repeatedly use the Sobolev inequality

(3.7) lul; < COMullyyy 4

and smoothing operators S,: wi(D p) — W/ (D p), 6 > 1, defined by
Spu(x) = 6° [ w6 = iy b,
I

where C(i) are positive constants, 0 < k¥ < 1 is a fixed sufficiently
small constant, and ¥ € C0°° (]R{Z) is a nonnegative function satisfying
Jw(x)dx = 1. It is easy to show the inequalities

(3.8) I1Syull; < C, O™ |lul);,

(3.9) I(Z = S)ull; < ey, NONufl; (<),

where C(i, j) are positive constants and, in particular, C(i, i) =1.
Lemma 3.3. There is a constant C > 0 such that

(3.10) IF{u] = Folly < C(luly + o], - vl,,
(3.11)
jo L+ ool < C( X Wollgeadwlnt 3 kbl ..
i+j=s i+j=s
, i<s/2 i<s/2
and
(3.12) |Lul, < Clul,,

Jor 0<s<s,—2and 0<t<1.

Proof. (3.10) and (3.12) are clear. (3.11) follows immediately from
(3.4) and (3.7). q.ed.

We construct a sequence {u,} as follows: We define %, and u
n>0, by

n+1?

(3.13) u, =0, U, =U,+V,,
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where v, € CS°+2’“(5 ,) is a solution of the Dirichlet problem

(3.14) L, [u+#,l,=f, inD, v,=0 indD,

(3.15) ¢, = FTu+ ]y,
(3.16) @ =Su,
(3.17) Jo= = Sofll,

fn = Sn—an—l - San + ‘S'n—lF[iu':| - SnF['u'] 4

|
—_

n

(3.18) Ry=0, R,=3"r,

Jj b

.
1l
[=

= (Lej[,u +u;l- Lej[,u +i;lv; —¢;Lv; + Q;

G19) O<j<n-1),

Q;=Flpu+u; 1-Flu+ul-Lip+ul,

(3.20) O<i<n_1)

Here S, =S, and 0, =60" =¢ "2,

The sequence {u,} is well defined and convergent if we assume the
following.

Assumption 3.4,

321 g+ i), (u+

(3.12) Lip+1a)
Assumption 3.5.

(3.23) [[v,llo < Cll Ayl

.29 ol < C(Ifl+ 3 W+ Bylualivyl) @ <s<sy),
i+j<s
j<s

where C > 0 is a constant independent of ¢ and =n.

Assumption 3.4 shows, by Lemma 3.2, that L, [u + @] is an elliptic
operator with real C*°* coefficients defined in _D'p ; this implies that we
can solve the Dirichlet problem (3.14) in C%*? '*(D,) (although C"*

regularity of the metric g played an important role here, C* smoothness
will suffice for any other argument in this paper). Assumption 3.5 ensures
the convergence of {u,} (cf. Proposition 3.6 and 3.7).
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Based on Assumptions 3.4 and 3.5, we have the following Propositions
3.6, 3.7 and Theorem 3.8 which were originally proved by Amano [1].
(Unfortunately, the author happened to make a mistake in [1]. In fact,
though the propositions of [1] are true, one of their assumptions which
corresponds to (3.24) in this paper is too strong for practical applications.)

Proposition 3.6. On Assumptions 3.4 and 3.5, if

(3.25) 0< e < min((4C)2, 2C)™Y,
(3.26) 6>2,

(3.27) Sy = 4+ 2K,

(3.28) 5+Kk<0<s,,

then we obtain

VE js—o
—2—6

(3.30) [roll, < C,e6°™°  (0<s<s,—2),

(3.29) llvoll, < 0<s<sy),

where C, = 1(s,+1)C.
Proposition 3.7. On Assumptions 3.4 and 3.5, if

0 < & < min [(40)‘2, o)™, ecc)?,
o -2
{C(2C2+2C+ZC(1'+2)C(1'+3+K,a+x))} ,

i=1

{CCO)(2c(1 + K, 5)—2) + 1)}‘2} .

(3.32) 6>2"",

(3.33) max(3+k, j(c+1+k))<1<0-2,
(3.34) S5+k<o<s5,/2-1,

(3.35) 5o =>4+ 2k,
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then we obtain

e o_
(3.36); vyl < %ej_f (0<s<sy,
Ve (s<0-—xk),
(3.37), Il < { Vs
\/Eej (6 >0+kK),
(3.38), luy — a0, < vty (0<s<sy),
(3'39)1' ”"j_1“3 < C180;:T (0<s< Sg — 2),
(3.40), I£l, < Ce6°  (0<s<s,),
T—0
(3.41); g < C3\/.§0j ,
where v_, =0, r_, =0, and each constant C, > 0 depends only on x,
Sy, and C.

Remark. By virtue of the interpolation inequality, (3.29)—(3.30) and
(3.36) I (3.41) ; remain valid for real s, if we modify the constants C)—
C, appropriately.

Theorem 3.8, On Assumptions 3.4 and 3.5, if r > 14 + 2k for some
0 < k < 1, then for a given small p > O there exists a function u_ €

W’/Z”Z_"(Dp) such that

(3.42) Flpu+u J=0 in Dp, u,=0 on 6Dp
and
(3.43) 4ol j2m2er < Ve

Proof of Proposition 3.6. By (3.23), (3.17), (3.8), (3.3), 6, > 0, and
2C+/e < 1, we have

Ve jo-
(3.44) ool < 4267
If we assume that
3.4 VE gi-o j
(3.45) lool; < S2077 (0 <),

then, by (3.24), (3.17), (3.2), (3.45), (3.8), (3.3), Ve =1, 5, >0, 6 > 2,
and (2C +2C%)yz < 1, we obtain

Vg

(3.46) fooll, < %

Hence (3.29) is proved.
Next, we note that (3.19) gives

(3.47) ro = —¢,Lvy + Q,
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and that (3.12), (3.15), (3.3), and (3.29) imply
(3.48) llegLugll, < 1Ce6°™°.

Since (3.20) and direct computation yield

1 ta
Q =/0 {/0 5;L[,u+‘cv0]v0d1} dt,

we obtain by (3.11), (sy—2)/2+3+k <s,,and ¢ >5+x,
(3.49) 1Qll, < 3(s + 1)Ceb’°.

By combining (3.47)-(3.49), we have (3.30).

Proof of Proposition 3.7. (3.36),~(3.41),. Since u, =0, v_; =0,
and r_; = 0, (3.36),~(3.39), are clear. (3.40), follows from (3.17),
(3.8), and (3.3) when C, > 1. By (3.15) and (3.3), (3.41), is valid when
C; > 1. The constants C, and C; will be determined precisely in the
following part of the proof.

(3.36),,- (3.41),, = (3.36),,,. (3.23), (3.40),, and 2CC,& < 1
give - -
€ ,0—0o
(3.50) v, lly < %9,, .
If we assume that
€ .ji—0 .
(3.51) vl < Y207 (0<j<s),

then, by (3.24), (3.40), , (3.2), (3.7), (3.8), (3.37)
0, Vebd=1, 6>2,and

i< (3.51), S+x -0 <

N
C2C,+2C+) C(i+2)C(i+5+Kk,0+K)|Ve<]1,
2

i=1

we have
(3.52) I, < Y2677,
(3.36),,— (3.45),,, = (3.37),,,, . Since (3.13) gives u,,, = 37 ,v;, by
© (3.36),,,, We obtain
€ = 50
(3.53) ety lls < Ve doe.
7=0

Direct computation shows that, by 6 > 2!/

(3.54) % }:oej“’ <ve whens<o-x
J_—_
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and

n
(3.55) §2050<\/_0n+1 when s > g + k.
=0

Jj=
By combining (3.53)-(3.55), we have (3.37)

n+l1°
(3.36)j$n—- (3'41)Jsrz (3.38),., - In the case s < ¢ + K, we obtain
(3.56) e, ~ &, ., <Cls, 0+ rc)\/_@nJrl

by (3.9) and (3.37). In the case s > ¢ + k, we get

(357) IlUn+i n+1”s S 2\/_6n+1
by (3.38) and (3.37),,,. Hence, we need only to set

0<s<o+K

(3.58) C0=max{ max C(s,a+rc),2}.

bl * Since

(3.36), - (3.41),,, = (3.39)

Len u+u,lv, — Len[u +a,lv, = /01 %Len[u + i, +t(u, —it,)v,dr,
(3.11), (35=2)/2+3+K < 55, (3.38),, (3.36),,,,and S+Kk -0 <0
give
(3.59) 1L, (1 + w,Jv, = L, (4 +@,0,,

<, —1CChed,°  (0<s<sy—2).

(3.12), (3.41),, (3.36) and 7 <o —2 show

n+t?
(3.60) | - ¢e,Lu,ll, < $CCuel6,°  (0<s<s,-2).
Direct calculation gives

Q,=Flp+u, J-Flu+u]-Lip+u,v,

(3.61) L(ra
= / {/ ~—=Llu+u, +v,Jv dr} dt.
0 0 BT nt n

By combining (3.61) with (3.11), (s, —2)/2+3+x <5, (3.36),,,, and
5+ K —0 <0, we obtain

(3.62) 10,1, < §(sy — 1)Ce6, 7 (0<s<35,-2).
(3.59), (3.60) and (3.62) imply, by (3.19),

Irll, <Ce6°  (0<s<s,-2),
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where

(3.63) C =15, - 1)CC,y+ 3CCy+ L5, — 1C.
(3.36),.,— (3.41),__, = (3.40),,, . We note that

(3.64) St = SR, =S, Ry + S, Flu] - S, Flul.

We shall estimate each term of (3.64) separately. (3.8),(3.18), (3.39)
0 <5,/2—1,and 6 >2 give

j<n+l

(3.65) IS, R, |, < 2C,(s, 5o~ 2)egq,,; (0<s<sy)

and

(3.66) 1,01 R, 1l < C C(s, 55— 2)eb, T (0<s<sy).
(3.8), (3.3), and 0 —s5 ~s, <0 show

(3.67) IS, Fiulls < C(s, 0)ed,.] (0 <s<sp)

and

(3.68) IS, Flulls < Cls, 0)e6, 7 (0<s<sp).

Hence, we obtain

“‘f;H—l“S S CZSOZIT (O _<_ N S SO) s

where

(3.69) G, = ngg()&ClC(s, 50— 2)+2C(s, 7)) + L.
(3.36),.,— (3.41), ., = (3.41),,,, . Direct computation gives

(3.70) Flu+u, 1=U-S)Ful+(I-S,)R, +r,

by (3.13)-(3.20). Since ¢, = |F[u+ @,,,]1l,, we have, in consequence

of (3.70),

€y ST =S )Fullg + 1 = SR, |+ I1,lo
+|Flu+i,, - Flu+u,, ],

We shall estimate each term of (3.71) separately. (3.7), (3.9), (3.3), and

l1+x—17<0 show

(3.72) (I - S,)Flull, < C(O)C(1 +x, sp)e0, ]

n+l1°
(3.7), (3.9), (3.18), (3.39),,, 0 <sp/2—1, 022, and 1+x-7<0
give

(3.73) (I = S,)R,|, < 2C,C(O)C(1 + K, 5, — 2)eb

n+l°

(3.71)
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(3.7), (3.30), C, > (s, +1)C/4,and 1 +x — 7 <0 imply

(3.74) |74l < C,C(0)e8° 7.

(3.7), (3.39),.,,

(3.75) Ir.l, < C,C0)e6, ]  (n>1).

(3.10), (3.2), (3.7), (3.8), (3.37),,,, (3.38),,,, and T>3+x give

(3.76) |Flu+1il,,,1- Flu+u,, 1, < 2CC,C2)(C + C2)Ve)Veb, ., .

By combining (3.72)~(3.76), we obtain, in consequence of ¢ <1,

g,,1 < {CO)C(1+x, 5+ C,CON2C(1+x, 8, -2)+ 1)Ve

+2CC,CQC + C2)}VEb, 7,

which implies, by C(0)(2C(1 +x,5,—2) + 1)y < 1/C,

(3.77) | S Gyl ]

if we put

(3.78)  C,=C(0)C(1 +x, ) + C,/C +2CC,C(2)(C+ C(2)) + 1

Substituting (3.78) in (3.63), we can determine C, explicitly. Hence,
by (3.69) and (3.78), we also get explicit expressions of C, and C,. This
completes the proof.

Proof of Theorem 3.8. If we put ¢ =s,/2— 1, then (3.36)- gives

i—1
(379 =l o1 e S SN0l S 5 Z(e
v=j

as [, j— oo, i>j. Since s0/2—2—21c25—1—1c22,(3.7) shows
Iui - uj|2 < C(2)||ul. - uj||50/2_1_,c-

l+x—-7<0,and ¢ +1+x—27<0 show

Hence, there is a function u__ € w2150y n C*(Q) satisfying u, =
u_ in WFRQ) 0 CH(Q).

Combining (3.70) with (3.9), (3.39);, (3.7), and s5/2-2 -2k > 5 —
1—x >0, we can show that F[u+u,]— 0 in W >7(Q)n c*(Q).

Since /0D, = i v,l0D, =0, we have u oD, =0. By (3.37);,
we obtain ”uoo”so/Z—l—x = lim,_, ”“n“so/z-n—x < /&, which completes
the proof. q.e.d.

Now, for the proof of Theorem 1.1, it suffices to verify that Assumptions
3.4 and 3.5 are really fulfilled, i.e., that (3.21)-(3.24) follow from (1.1),
(1.2),and r > 14+ 2.
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Proof of Theorem 1.1 (Part 1). We shall show that (3.21) and (3.22)
are valid for any n.

Step 1. (3.21) and (3.22) hold when n = 0. In fact, if we choose the
constants d > 0 and p > 0 sufficiently small and @ > 0 sufficiently large,
then we have g’ uu <1/2 and Lu>2.

Step 2. If we assume that (3.21) and (3.22) arevalid for n=1,2, --. ,
k, then by (3.13), we can construct a function u,, . Using the proof of
Proposition 3.7 we have ““,-lls <vefors<o-x,0=5,/2—1and j=
0,1,.--,k+1. Since r > 14+2x and s, = r—2, Sobolev and Hausdorff-
Young inequalities, i.e., (3.7) and (3.8), give |uk+1|2 < C(2)ve, which
shows that (3.21) and (3.22) hold for n = k + 1. Therefore, Assumption
3.4 is fulfilled.

4. Proof of Theorem 1.1 (Part 2)

The remaining part of the proof of Theorem 1.1 follows from certain
estimates which we show in this section by modifying Amano’s calculation
[2]. Roughly speaking, we have a strong estimate in an elliptic region
(Lemma 4.4) and a weak one in a neighborhood of degenerating points
(Lemma 4.3). Using a sort of patchwork technique (Lemma 4.2), we can
combine them together to obtain (3.23) and (3.24).

Unless otherwise specified, P denotes a degenerate elliptic operator of
the form

(4.1) P=4d"80,+d0,

with real C*° coeﬂicients a’ = d’ and &' defined in Q, where Q is
a bounded domain in RY with C*° boundary. Assume that there is a
continuous function A(x) > 0 defined in Q such that

(4.2) / XEE, > ).
o

S stands for a subset of Q satisfying {x € Q: A(x) = 0} ¢ S. For the

sake of simplicity, we put

A, = max (1gllellx \D°a”|,, max, |D*a |0)
for k> 1 and - ,

B, = ITilfle(laUlk L), 1)
Unless otherwise specified, C and C,; are positive constants independent
of a” and a'.
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Lemma 4.1. We have
(4.3) 31118, » Plully < C(A)\Pull,lull, + 4 lull})  (ue C(Q)),
k

(4.4>Zn[ak,P]unfsC(AznPunmnunm+ 3 A,iznuni),
k

i+j<s+1
i+2<s+1

(ue CE(Q), s> 1).

Proof of Step 1. We shall prove (4.3). Lemma 1.7.1 of Oleinik and
Radkevich [6] shows that

o y -
d@lu) < Cayy aluu,  (ue Co(Q),
k 1

which implies

(4.5) Zn[ak, Pl <cy / {(au,) + (ahu,)?} dx
< CAZZ/a gty e+ C A2
!

By integrating by parts, we have
/a”u”uljdx = — ((Pw),, u) + (18, Plu, u,)

+(,1’Z(au a')ul’ u[),

which means

(4.6) Z/a‘fuk,.ukjdx
k

2
<c (I!Pulllllulll + 3 8, Plullpliul, + Azllull1> :
k

From (4.5) and (4.6) it follows that
> 8, Pl < CAIPull,llull, + Alul}) (€ C(Q)).
k

Step 2. We shall prove (4.4) for s = 1. (4.3) shows
16,8, , Plully < C(lI18, » Pluylly + I8, (8, , PNuly)
< C(AyllPullyllully + 4,118, , Plull,llully + A3lull3).
Hence we have
Z 18, Plll> < ClylPulllul, + AZlully)  (n € COQ)).
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Step 3. We assume that (4.4) is valid for 1 < s < r. Direct computation
gives

18,18, , Plul>_, < C(l8,, Plw,lI>_, + I8, , [0, » PTIull’_,)

r—1—

< C(A2||Pu||,+1||ull,+1 +a, 8, Pull, v

r+1

2 2
+ > Ai+2||u||j).
i+j<r+l
i+2<r+1

Therefore, we obtain

> N8, Plul?
k

2 2 00
SC(A2||Pu||,Huu||,+1+ ) Amuun,.) (e CQ),
i+j<r+1
i+2<r+1

and the proof of Lemma 4.1 is complete.
Lemma 4.2. For a fixed y € C™(Q) satisfying supp|Vyx| C Q,

@7 x, Plull} < C(B,|Pull liull, + Baluld) (v e C™(Q),

48 |, Plul;
< C(By|Pullllull, + B lull})  (we C™(r),
(4.9)
Ilx, Plull;
<c(Blpullul, + Y Boul}). (e c¥@, s22)
i+j<s
i+2<s

Proof of Step 1. We shall prove (4.7). Let us consider a cut-off function
% € Cy (Q) satisfying 0<¥ <1 and §,x cC ¥ for any i, and define an
operator P = 4"8,0, +'9; by P = 3P. Since [x, Plu =[x, Plu and
|Pull, < ||Pully, it will suffice to prove
(4.10)  [lx, Plullg < C(BollPullgllully + Byllull) (€ C=().
Corollary of Lemma 1.7.1 of Oleinik and Radkevich [6] shows that

Y k@ u)? < Bpad“uu,  (we CX(Q),
+ N
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which gives
(4.11) Ix. Plul? < CB /a wu, dx + CBE|lull.

by integrating by parts, we have

Skl = Skl Lk

a wu,dc= — (Pu,u)+ (@, -a)u,u
(4.12) / kY ~( )+ 3((a; k )

5 2
< 1Pullgllully + CAyllulig »

which together with (4.11) implies (4.10).
Step 2. We shall prove (4.8). Let us take the same cut-off function ¥
as in Step 1 and define an operator P = a” 8,0, + &'3 by P=%P. Slnce

[x, Plu=1[yx, Plu and ||Pu|[I C||Pul|,, we: need only to prove
2 2 00
(4.13) |\l Plull; < CBI1Pull,flull, + Byllul})  (u € C™(Q).
(4.7) and Lemma 4.1 give
1,112 1. 112 311,012
”ak[X= P]u“() S C(”X H P]ukHO + ”[ak 3 [Xa P]]“”o)
5 2, 2
< C(By||Pull llully + By llully) ,

which implies (4.13).
Step 3. We prove (4.9) for s = 2. We need only to prove

51,0112 > 2112 0
(4.14)  |llx, Pluly < C(BylPullliull, + Byllull})  (ue€ CT(Q),
where P is the operator introduced in Steps 1 and 2. (4.13) and Lemma
4.1 give
5102 =2 S11112
||3k[X s P]ulll S C(“[Xa P]uk“1 + ”[ak s [Xa P]]“”])
=4 2 2 00
< C(B, || Pullyllull, + Byllully),  (ue CT(Q)).

Hence(4.14) is proved
Step 4. We assume that

= 2
x> Plull;
= 2 oo
C(BzuPuusuuuS+ ) Bizuuuj), (weC™Q), 2<s <),
i+j<s
i+2<s

Direct computation gives
52
0, [x s Plull,_,
= 2 =102
< Cllxs Plugll,—, + 10, > [x» PNull,_))

5 2 2 00
<c(BPullul, + 3 Bhall}). (e V@)
e
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which implies

~ 2 = 2
e Pl < € (BolPul Jul, + 5 Blolul}). (e cC*(@).
i+j<r
i+2<r
Hence the proof of Lemma 4.2 is complete.

Lemma 4.2. Assume that

(4.15) lullo < KIPuly,  (we C(Q).
Then we have
(4.16)
lull, < KC(IPul, + 4lul),  (ne CO(@),
(4.17)
Il < KC(IPul,+ 3 Aulul).  we @, s22)
LS

Proof of Step 1. We shall prove (4.16). Since
6, ully < KllPull, + K||[8, , Plully
and, by (4.3),
[0, » Plully < C(|Pull; + Ayllull)),

we easily have (4.16).
Step 2. (4.17) is valid for s = 2. In fact, it follows from (4.16) and
(4.4) that

10,ull, < KC(IPull, + 8, , PTull, + A1l
sKC(uPu|{2+ > A,-+2uunj).

i+j<2
i+2<2

Step 3. If (4.17) holds for 2 < s < r, then we have

0, < KC (1Pl + 110y P, + 3 Ayl )
i+j<r
i+2%r

and (4.4) gives
I8, Plul, < C(nPun,+1 S A,~+znun,.).

i+j<r+l
i+2<r+1

Combining the above two inequalities, we can show that (4.17) is valid for
s=r+ 1. Hence Lemma 4.3 is proved.
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(4.16) and (4.17) will turn out to be trivial and useless unless the cru-
cial constant 4, > 0 is sufficiently small. Fortunately, by virtue of the
definition of # ,» the estimate (3.37);, and the fact & « 1 which follows
from our assumption (1.1), we obtain 4, <« 1. Hence, Lemma 4.3 is not
useless, and actually works very well when it is teamed with the following
lemmas.

Lemma 4.4. Assume that P is uniformly elliptic in Q, ie.,

a’(x)EE, 2 2le?, Ay = const > 0.

Then there is a constant C, > 0 of the form C, = C -| a polynomial of
Ay ' and B,| such that

lul, < C, (uPuuo +/Ysupla] - a;muuo) ,

(4.18)
(u € COO(Q) ’ u‘aQ = 0) ’
fu, < G (1Pules + X Bl )
i+j<s—1
(4.19) Jsml

(ue C*Q), ul,q=0, s> 2).

It is not difficult to prove (4.18). In fact, we need only to apply well-
known standard techniques to the linear elliptic operator P and to calcu-
late several constants precisely. By induction with respect to s and patient
calculation, (4.19) follows from (4.18).

For 6 > 0 we define a set S; by S; = {x € Q: dist(x, S) < J}.

Lemma 4.5. Assume that S is a compact C™ submanifold of Q and
Q\ S is connected. Then there exists a function y € L™(Q) such that
y=0on S, ian\S(j y > 0 for any sufficiently smalil 6 > 0, and

2 o
(4.20) /?u dx < C (HPuIlOHuHO +1 suplalfj - a””“”o) ,

(ue CT(Q), ulyg=0).

Proof. Standard techniques of elliptic operators give

. P
[ P dx < (IPululy + 4 suplaf] - allju3) .
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where 4 = A(x) is a continuous function satisfying (4.2) and Du =
(0u, Oyu, --- , 8,u). Hence, it suffices for our purpose to show

(4.21) /yuzalx < /ilDu[zdx.

Step 1. Let us fix a point p € Q\ S arbitrarily. By virtue of the funda-
mental theorem of ordinary differential equations, we can construct a fam-
ily of curves ¢(¢; x) € C*([0, T,1xU,) such that ¢(0; x) =x, c(t;x) ¢
S for 0 <t < T, when x € Q\S, ¢(T,;x) ¢ Q, [¢e(t;x)] =1,
sup, v, Tx < oo, and such that ¢(¢; ) is a local C* diffeomorphism de-
fined in U, for any fixed ¢, where U, isa sufficiently small open neighbor-
hood of p, T, is a positive constant, and 7, = inf{z > 0: c(¢; x) ¢ Q}.
We define a function ,up(x) by

(4.22) ,up(x) = inf{i(c(t; x)): 0Kt <7, }

for x € U, . For a function u € C*(Q) satisfying ulyo =0,

u(x) =u(c(0; x)) —ulc(r,; x)) = —/rx Du(c(t; x)) - ¢(t; x) dt
0
holds, so we have
(4.23) fu(x)) < C/r’ |Du(c(t; x))|* dt.
0

Multiplying (4.23) by up(x) and using (4.22), we obtain

() ()P < € /0 “Me(t; ) Du(e(ts x)I dt,
which implies
| wptax<c [ upulax.
U, Q

Step 2. Step 1 shows that there is a finite number of points p,,
Py, -+ »py in Q\S suchthat Q\S c !, U, and

/ p, u’dx < C/ A|Dul’ dx.
[ ! Q

P

Therefore, we need only to define u(x) by
min{up_(x):erp_, I1<i<N} ifxeQ\S,
u(x) = | | .
0 if xeS.

Hence (4.21) is proved. q.e.d.
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Let us take a real smooth function ®(x) defined in Q such that ®(x)
has at least a zero point in © and that V® # 0, and put for ¢t > 1,

UD,t)={xeQ:|®(x)| < 1/t}.

Lemma 4.6. There are constants C, >0 and C >0 independent of P
and t > 1 such that

2 . i j 2 . i j 1 2
Cot” nf (a"®,0))llully = tv}gft)(aﬁj ~ a;)|ul,
1 ij 1 2
(424) < (IPululo + 5 sup (af = el )
(ue COO(U((Da 1), u‘a(j(q;,t) =0, t21).

Proof. For a real-valued function ue C™(U(®, ?)) satisfying u] SU@, 1)
=0, we put
v = (T——e@)—lu, T = const > 0.

Direct computation gives
Pu=(T- e'd’)(aijvij + aivi)
- e@{tz(aij(bid)j)v + t(a[j(Dl.j + aiCDi)v + 2t(aij(Divj)}.
By integrating by parts, we obtain
/(T - e'd’)_lPu ~vdx
_ ij dx 1 5 1 4\ 2 dx
s / e'¢(T - e'q))_l(a'.jcbl.(I)j)v2 dx
- t/e@(T - e@)_l(aU(Dij + ai(Dl.)vzaix
—w /aij{tet(D(T - e@)_lcbiv}vj dx.
Since
i, 1D @\ -1
[2/a”{ze (T - ) (Div}vjdx[
< tz/eZ@(T - e'd’)_z(aij(l)icbj)vzdx + /aijvl.vjaix

and

et(b(T _ et(b)—l _ eth:)(T _ etd:)—z _ e@(T _ 2€t¢)(T _ etd:)—z ,
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we have
/(T - e'q))_zPu cudx

<7 / (T - 26®)(T - &) (a0 B i dx
(4.25) o o3 i _
- z/e’ (T =™ (a0, + a'®u’ dx
_ 1 .. .

+ /(T — ) zz(aﬁj - a))u’ dx.
Combining (4.25) with

-1 td —-1,-1 b, —1 -1
e <e <e, (T-e ) <L(T-e") <(T-e) , (xeU(D,1),
we obtain (4.24). q.e.d.

Now we can prove the remaining part of the proof of Theorem 1.1.
From nowon C and C; denote positive constants which are independent
of e>0,and n=0,1,2,--.

Proof of Theorem 1.1 (Part 2). We shall show that (3.23) and (3.24)
are valid for any »n. For the sake of simplicity, we put L, = L, [u+ #,]
for n=0,1,-.-,and use A;c") and B,(c") to denote constants 4, and B,
when a" = a’[u+@,] and @' = a; [u+1,]. Let us take the following
cut-off functions y, ¥, and f: X € C§°(DP), X, f € CS"(EP \ D),
0 < x,}Z,kNV < 1, x =1 in a neighborhood of Dp/2, ¥y=11ina
neighborhood of supp(d, x) Usupp(d,x), and )~7 =1 in a neighborhood of
sup ¥ .

Step 1 (estimate of ||xv,ll,). Applying Lemma 4.6 to a function
PD(x) = (I>(x1 , x*
and the operator
Ly =L, [¢] = a}[110,9, +a, [u]0;,

)= (x2 —pz)/(the diameter of Dp) , D= (p1 , pz) eD,

we obtain
inf g2 2 e 2
Coinfa; [ulllxv,llg + inf a; (1]l xv,llg
< C(”L()X'Uo”o”o : ||X'Uo”0
ij ‘ 2
+ %Supp((agé[ﬂ])[j - (020[/1])[)”)(7)0”0)-
Here we note that, by (1.1) and the definition of u = u ,» We have
a’lu]~28, a; [u]~0, and

(4.26) (aéi[u])ij - (aéo[/‘])i ~ (a1, = oy = Maggy +Hgon) =0,
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where 4 ~ B means that 4 and its derivatives are approximately equal
to B and its derivatives respectively. This implies that

(4.27) x0,lly < ClILoxyllo-
Lemma 4.3 shows that (4.27) gives
(1]
vl < CULexvgll, + ALY 2w,l1,) »

Ixvlls < (IlLoxvoll + 0y AHzllxvoll) (s >2).

i+j<s
i+2<s

Hence, if we take p > 0O sufficiently small so that
cA = Cmax (max \D°d’ [;t]]0 , max |Dsal [ﬂ]lo)

then we obtain
(4.28) Ixvgll, < CllLgxvyll;

0)
@29) ol < C(ILorglt 5 ADlrvl,). @5 <)
irj<s
i+2<s, j<s

Step 2 (estimates of ||(1 — x)vll, ). Since
det(,;) 2 (6~ p/2)"" exp(2/(p/2 - p)) - det($,) >0 inD,\D,,,

we can show, by (1.1), that L, is uniformly elliptic in D N supp(1 — ).
Applying Lemma 4.4 to the operator L, we obtain

10 = )wglly < € (ILLo(1 = XYyl
+ §y/sup [(@ZLu1),; - (@] (D), I3 = x)vollo) »
this gives, in consequence of (4.26),

(4.30) (L = 0)voll; < CllLG(1 = x)ll,-
It is easy to show, by Lemma 4.4, that

11 = 2w, < c(nLou — vl

(4.31)
+ Z Bz+1 ”0”;+1> (2 <5 <5p).

H—j<S—
J<s—1
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Step 3 (estimates of |\vyll,). (4.27) and (4.30) imply
(432) gl < CUILeu,lly + X s Lolvglly + (L = %), Lolwglly)-
By virtue of Lemma 4.2 and the definition of yx, ¥, )NZ , we have
10z, Lolvg = x> ZLelxvollo
(4.33) < CIFLoxvollo + B 170, llo)
< C(ILyvolly + BN Z Vo)

(L= %) Lolvglle = (L = x)» XLylxvyllo
(4.34) < CUIFL X, llg + B5 3w, llp)
0, =~
< C(ILyvolo + BY 7, 10).
Since L, is uniformly elliptic in Ep N (supp ):() , by applying Lemma 4.5
to u=v,, S=D,and Q=D,, we obtain
~ 2
”X'Uouo < C(”Lovollonvo”o
y . s
+ %SUP l(a;i[nu])ij - (aéo[ﬂ])il”vouo)-
It follows from (4.32)-(4.35) that
lugllp £ CULoll + /N Lgvollohvglly
+ /4 supl@uD),; - (@l (4D ]1v, o)
which implies, in consequence of (4.26),
(4.36) lvolly < CllLyuylly-
(4.28) and (4.30) give
”volll < C(”Loxvo‘h + ”Lo(l - X)vono)
S CILyvglly + x> Lylvglty + M1 = )5 Lylvgllg)-

As in (4.33) and (4.34), by using Lemma 4.2 and cut-off functions x, %,
% we have

(4.38) x> Lolooll, + (L = %), LoTvglly < CUILGwolly + BS 1 Zvgl,)-
(4.18) of Lemma 4.4 and (4.7) of Lemma 4.2 show
| 3voll, < CUIL IV Ml + B IZv,lg)
(4.39) < C(ILgvolly + B Nlvgllg + 1K » LoTvllo)
< C(I|Lotglly + BS v llo)-

(4.35)

(4.37)
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Combining (4.37)-(4.39) with (4.36), we obtain
(4.40) lvglly < CllLovgll;-
(4.29) and (4.31) give

0
HvolLSC(HLoxvolls+llLo(1—x)volls_1+ 3 B,&;nvon,.)

i+j<s
+2<s, j<s
()
(4.41) < C(”Lo%”st > Bl
i+j<s
i+2<s, j<s

0 Lolugll, + 161 = ). Lolvolls_l)

for s > 2. (4.9) of Lemma 4.2 shows

(4.42) ||[(1—x),Lo]volls_1SC(IILOUOIIS_1+ ) Bfi)znvon,-)

i+j<s—1
i+2<s~1
and
1x s Lolooll, = x> FLoZv,
~ ~ 0 ~
< C(I7Lovol, + 35 BIvol,)
(4.43) 3 '
0 0),,~
<c(izgl+ X Bl + B1vl, )
i+j<s
i+2<s, j<s

Since L, is uniformly elliptic in Dp N (supp }7), we have, by (4.19) of
Lemma 4.4,

~ ~ 0 ~
nvaHSSC(nLOvaus_1+ 3 Bf+)1l!xv0||,-+1)

i+j<s—1
j<s—1

0 =
> Blvol + I Lolvol )
i+j<s
i+2<s, j<s

< c(nLOvons_1 n

which gives, in consequence of (4.8) and (4.9),

@ad) 7l < (il 3 Bl
i+212£,ssj<s
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Hence, combining (4.41)-(4.44), we obtain

0
(4.45) l|’Uo||SSC(”LoUo”s+ > B§+’2uvon,~)
i+j<s
i+2<s, j<s

for s > 2. Since (3.14) gives Lyv, = Le0 (u+i,lvy = f,,and (1.1) implies
B ~ul,,,, it follows from (4.36), (4.40), and (4.45) that

i+2
lvgllg < Cllsollo »

lvolly < C(IIJBIIS + Y luli+4llvollj) (0<s<sp),
i+j<s
Jj<s

i.e., Assumption 3.5 is fulfilled when n=0.

Step 4 (estimates of ||xv,,ll,). In Steps 4-6, we assume that (3.21)-
(3.24) are valid for n =1, 2, --- , k. Then, by (3.13), we can construct
U, - Since we have already proved, in Part 1, that (3.21) and (3.22) hold
for n =k + 1, by Lemma 3.2 we are able to solve the Dirichlet problem
(3.14) for n =k + 1 and to obtain v, .

As in Step 1, we consider the same auxiliary function ®(x) and apply
Lemma 4.6 to the operator

~ if ~ i -
Lk+1y = Lek+,y[ﬂ + uk+1] = askHy[ﬂ + uk+l]az‘aj + aekﬂy[/‘ + uk+1]az‘ ’
so that we have
C inf 22 o ,2 inf 2 ~ 2
o1l a4, .. (n+ uk+1]”ka+1y o +in aek+ly[ﬂ + uk+1]|!ka+1J/Ho
< C(“Lk+1ka+1l|0 . “Xvk+1y”0
s } . N )
+ %SuP((a;ZH u+ uk.,,ly]),'j = (a;m[/‘ + uk+1y])i)llka+1y”0]-

By using the proof of Proposition 3.7, (3.37),,,» and (3.41),,, are
valid. Hence, (1.1), (3.1), (3.15), and the definition of u = K, give

ajil[u + 11, ¥~ 25, afk+l[/z +1,,,1~0, and

(aéi+1y[ﬂ + izk+l.y])u - (a;k+1y[ﬂ + ak+1y])[

~ (Byp11 = Har1a = Biaiy — Hap1p) =0,
where A ~ B means that 4 and its derivatives are approximately equal
to B and its derivatives uniformly in k =0, 1, 2, --- . This implies

(4.47) ”X'UkHy”o < C||Lk+1ka+1y”0-
By virtue of Lemma 4.3, (4.47) gives

k+1
120 Iy < COLp 20 VMl + A, 1)

(4.46)
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k+1
lxve 20y < C<“Lk+lka+1“s + ) 4 f+2 )llka+1ll ) (s >2).
i+j<s
4255

(3.37),, and (3.41), , show that
|ak+1y|4 < C( )“uk+1”s+x ~ (4)“uk+1“5+x < ‘/EC(4)=
when s =5+« and g =5,/2 — 1, and also that
Ers1 S C361i:17y < C36_2 = Cse
by (3.33) and (3.1). Thus, it follows from the definition of u = x , that
(k+1) _ . 5 i .
CA, ' =max (max |D* a oL+ He o max (D a, lu+ uk+1]|0)

i,j \1<552
<1

if we take p > O sufficiently small. Here it is to be noted that the procedure
to determine p depends neither on ¢,y nor on #, ,y; actually, it
depends only on &, g, T and certain constants which we have already
specified. Hence, we obtain

(4.48) levk+1||1 < C||Lk+1yka+1y”1
and
k+1
(4.49) fxve, i, < C(llLknykast + Y AN vl j>
i+j<s
i+2<57 j<s
for s > 2.

Step 5 (estimates of ||(1 — x)v,,,ll,)- It is relatively easy to estimate
(1 — x)vg,,, since L,y is uniformly elliptic in 5/, Nsupp(l — x), by
virtue of Lemma 3.2, (3.21)-(3.22) with n = k + 1, and the inequality
det(y;;) > 0 in D , \D /2 Which we have obtained in Step 2. In fact, as
in Step 2, (4.18) of Lemma 4.4 and (4.46) give

(4.50) (1 - X)vk.,.ly“l < C||Lk+1y(l - X)vk+1y||o
and, also, (4.19) of Lemma 4.4 gives
(4.51)

1L = 2w, il < c(nL,my(l 0l

(k+1
+ Z 1+-1'- )”(1 - )/U()”j.;.l) s (2<s< SO)‘
+j<s—1
j<s—1
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Step 6 (estimates of v, ll,) . (4.47) and (4.50) show

V1V llo < N P llg + 111 = )V ¥l
(4.52) < Cl Ly Vg lg + 1025 Ly g Jog iy llg
+ ”[(1 - X) » Lk+1]vk+1”o)-
As in Stgp 3, from Lemma 4.4 and the definition of cut-off functions yx,
%, and ¥ it follows that

N0 Ly Wesllo + (L= 205 Ly Jogllg

= 10t ZLis Ji0katllo + 101 = 205 ZLyy JZ0kllg

< CUFZ Ly XV lo + By 1701 ll)

= C(|Lyy 1 Vpallo + Békﬂ)”)?vkﬂ llp)-
Lemma 4.5 shows
120k 51llo < CUILks By llgPianlo

+hsup (e, lu+i, Dy — (@ Lo+ Didlve, o

Combining (4.52) and (4.53) with (4.54), we obtain
(4.55) 1iesrllo £ ClLgy 1 Veiy llo-

Here it is to be noted that, by (3.37),,, and (3.41).,,, the constant C
does not depend on £k =0,1, 2, ... (4.48) and (4.50) imply

el S Uxvplly + 1= ),
(4.56) S C(L gy Vgpilly + 0K s Ly 1vgey
I = ), Ly Jesllo)-

By virtue of Lemma 4.2 and the definition of y, ¥ and )? , we have
105 Lo 0y + 10 = %) L W0l

= 10 ZLyey J00n Il + 10 = )5 Ty, 10l

< CUZL 20k Iy + B v ll)

= ClILyy1 Vgl + BS N3 ly)-

(4.18) of Lemma 4.4 and (4.7) of Lemma 4.2 give

(4.58) 1701l < CULgy Verillo + B vg, -

Combining (4.55)-(4.57) with (4.58), we obtain
(4.59) NVks1ll} € CllLgy Vgl

(4.53)

(4.54)

(4.57)
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Here (3.37),,, and (3.41),_, ensure that the constant C does not depend
on k=0,1,2,---. By (4.49) and (4.51), we have

”vk+1”s < ||Xvk+1“s + [J(1 - X)Uk+1”s

< C(1|Lk+1;wk+1 L+ 1= ),

(k+1)
(4.60) + Z Bi+2 “Uk+1 ”J)

i+j<s
i+2<s, j<s

(k+1)
SC(“Lk+lvk+1“s+ Z B;,, ||'Uk+1“j>

i+j<s
i+2<s, j<s

+ “[X ’ Lk+1]vk+1”5 + ”[(1 - X) ’ Lk+1]vk+1“s—1)
for s > 2. (4.9) of Lemma 4.2 shows

“[(1 - X) > Lk+1]vk+1”5_1

(k+1
(4-61) < C(”Lk+lvk+1”s—1 + Z Bi+; )”vk+l“j>
i+j<s—1
i+2<s—1
and

“[X: Lk+1]vk+1”5 = “[X ’ sz_H]zvk-{.]“s
k+1
(4.62) < c(nLk+1vk+1»| —s+ S B,

i+j<s
i+2<s, j<s

(k+1) %
+ B ukaﬂns)

for s > 2. Since L, is uniformly elliptic in D, N (supp;?) , (4.19) of
Lemma 4.4 gives .

= ~ (k+1), %
XV lls < C(”Lk+lka+1“s—l+ Z B, ||XUk+1”j+1>

i+j<s—1
Jj<s—1
(k+1)
<C(Mntinlin+ X B Il
i+j<s
+2<s, j<s

I, L,mp]v,mus_l) ,
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which implies, by (4.8) and (4.9),

~ k+1
@63 F0elis S Ol + 5 B vl ):

i+j<s

i+2<s, j<s
Hence, combining (4.60)-(4.63), we obtain
k+1
@68) el < C(MLrveal+ X B Il
i+j<s
i+2<s, j<s

for s > 2. Since (3.14) and (11;12 give, respectively, L, v, .,
Lek [+ & Yoy = fipy and BE+;) ~ Cla+ 4, from (4.55),

(4.59), and (4.64) it follows that
1Verillo € Cllfesillos

el < C (Wil T Wt dladival, ), ©0<s<sy).
z'+j§s
j<s
i.e., Assumption 3.5 is fulfilled when n =k + 1.
Therefore, by induction with respectto n =0, 1, 2, --- , Assumptions
3.4 and 3.5 are valid for any »n. Hence the proof of Theorem 1.1 is now
complete.

5. Appendix

We shall prove that Theorems 1.1 and 1.2 remain valid for a C" Rie-
mannian metric g; that is to say, the Holder continuity of rth-order
derivatives of g, ; are not necessary. Throughout this section, we assume
that g = g;; dx'dx’ is a C" Riemannian metric in R? satisfying (1.1)
and (1.2). o

We define a metric y =y, dx’ dx’ by

vy = 7% k) = K /];2 y(k(x —y))g;(v)dy,

where k=1,2,3,... and yw € C0°° (]Rz) is a nonnegative function satis-
fying fp: w(x)dx = 1. We define the nonlinear operator F[u] by replac-
ing g, V,=V%,and f with Vi V! and

foxs k) = [ et =y)f0)dy
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respectively in (1.3). We put u = Hys So=T— 2, and

e(k) = max{|Flallg”, | FLally ).

It is easy to show that &(k) converges to a certain number when k — oc.
Since 7,; € CP(R’) € C"%(R?), f(-;k) € Coo(R?) € C""*%(R?), and
Yij = & in C'(]Rz) as k — oo, all the results proved in §§3 and 4 are
valid for the mollified metric I" when k is sufficiently large. In particular,
it is important that Assumptions 3.4 and 3.5 are both satisfied for "/,
v, = v,(x; k), u, = u,(x;k), f, = f,(x;k), and C = C(k). As
is noted in §3, C"*“ regularity is necessary when we solve the Dirichlet
problem (3.14). However, C’ regularity suffices for any other purpose.
Furthermore, no constants which appeared in this paper depend on «;
actually, we may assume that they are continuous functions of supremum
norms Iy,.jls (i,j=1,2,0 <s <r). This implies that any constant
which depends on k converges to a certain value when k£ tends to oc.

Applying Theorem 3.8 to y and f = f(-; k), we can show that there
exist a function u_ = u_(x;k) € w7 (D ,) and a large number N
such that (3.42) and (3.43) hold for all £ > N . Thus (4.43) implies that
the sequence {u (x; k)}z":N is strongly bounded in the Sobolev space
w’/z“z_"(DP). Hence, there is a subsequence {u_(x;k,)} -,
of {u_(x;k)},., such that {u, (x; k,)}>, is weakly convergent in
w'’ 2_2_"(D ,) and such that u_(x;k,) and its derivatives converge to
a function u_(x) and its weak derivatives respectively for almost every
x in D x As is well known,

[ Gl 22— < V%% o (x5 K j2mnmic
Therefore, by replacing u = u_(x; k) with u_(x;k,) and letting
v — oo in (4.42) and (4.43), we can prove that the result of Theorem 3.8
remains true for the C” metric g. Since (1.1) implies lim,___e(k,) < 1,
(1.5) follows from (4.43). Consequently, Theorem 1.1 remains valid for
g. As is proved in §2, if Theorem 1.1 is true, then Theorem 1.2 is also
true for the C” metric g.
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